We define a speedup of a topological dynamical system $T: X \to X$ to be another topological system of the form $x \mapsto T^{p(x)}(x)$ for some function $p: X \to \mathbb{N}$. The speedup relation is an analog of one studied in the measurable category by Arnoux-Ornstein-Weiss and others. In this talk the speaker will discuss characterizations of topological speedups for minimal actions of a Cantor set, under various assumptions on the function p. These characterizations are closely related the orbit equivalence results of Giordano-Putnam-Skau and in fact make use of the same unital ordered group invariants. Like orbit equivalence, the speedup relation looks different when different restrictions are placed on p, e.g. bounded, or continuous except at one point, and the speaker will discuss recent results in each setting.