The main objective of this talk is to present the interesting relations that appear between the convex, plurisubharmonic, and holomorphic functions, and their generalisations: the q-convex, q-plurisubharmonic, and q-holomorphic functions. In particular, since convex and subharmonic functions are naturally defined as sub-solutions (in the viscous sense), their generalizations also have a natural definition as sub-solutions. Nevertheless, these interesting relations break apart when the q-plurisubharmonic functions are used to define and analyse the q-pseudoconvex and relative q-pseudoconvex sets. In particular, we present two sets $U \subset V$ and a fixed neighbourhood W of the boundary bU, such that U is pseudoconvex in V, but every plurisubharmonic function defined on U is bounded from above on $W \cap U$.