Given a compact, connected and closed Riemann surface S with boundary, a subset of marked points M of S and a triangulation T, namely a maximal collection of non-crossing arcs with endpoints in M, it is possible to construct a finite dimensional path algebra A_T, with properties compatible with cluster theory.

In this talk, we show how to compute four different homologies of algebras from surfaces, using the combinatoric and topological data of the triangulated surface (S, M, T).