Let \(k \) be an algebraically closed field, let \(\Lambda \) be a finite dimensional \(k \)-algebra and let \(V \) be a \(\Lambda \)-module whose stable endomorphism ring isomorphic to \(k \). If \(\Lambda \) is self-injective, then \(V \) has a universal deformation ring \(R(\Lambda, V) \), which is a complete local commutative Noetherian \(k \)-algebra with residue field \(k \). Moreover, if \(\Lambda \) is further a Frobenius \(k \)-algebra, then \(R(\Lambda, V) \) is stable under syzygies. We use these facts to determine the universal deformation rings of string \(\Lambda_N \)-modules with stable endomorphism ring isomorphic to \(k \), and which lie in a connected component of the stable Auslander-Reiten quiver of \(\Lambda_N \) containing a module with endomorphism ring isomorphic to \(k \). Here \(N \geq 1 \) and \(\Lambda_N \) is a self-injective special biserial \(k \)-algebra whose Hochschild cohomology ring is a finitely generated \(k \)-algebra as proved by N. Snashall and R. Taillefer. This is a joint-work with Yohny Calderon-Henao, Hernan Giraldo and Ricardo Rueda-Robayo.