ANDREW HARDER, University of Miami

\textit{Hodge numbers of Landau-Ginzburg models}

Mirror symmetry predicts that d-dimensional Calabi-Yau manifolds should come in pairs X and X^\vee which, among other things, satisfy

$$h_{p,q}(X) = h_{d-p,q}(X^\vee).$$

Mirror symmetry also predicts that Fano manifolds admit mirror partners which are pairs (Y, w) where Y is a quasiprojective variety and w is a regular function on Y. Recently, Katzarkov, Kontsevich and Pantev have conjectured that a subtle form of Hodge number duality holds between Fano manifolds and their mirrors which relates the Hodge numbers of Fano varieties to the cohomology of complexes of "f-adapted logarithmic forms". I will discuss recent work which shows that the Hodge numbers of (Y, w) can be computed in terms of classical Hodge theory and I will show that in dimensions 2 and 3, these Hodge numbers have very concrete interpretations.