RODRIGO PONCE, Universidad de Talca

Asymptotic behavior of solutions to a Volterra equation

In this talk we study the asymptotic behavior of solutions to the equation

\[
\begin{cases}
 u'(t) = Au(t) + \int_0^t a(t-s)Au(s)ds, & t \geq 0 \\
 u(0) = x,
\end{cases}
\]

(1)

where \(a(t) := a \frac{t^{\mu-1}}{\Gamma(\mu)} e^{-\beta t}, \alpha, \beta, \mu \in \mathbb{R} \). Under appropriate assumptions on \(\alpha, \beta, \mu \) and \(A \) we prove that the solution \(u \) to equation (1) is uniform exponential stable, that is, there exist \(C, \omega > 0 \) such that for each \(x \in D(A) \), the solution \(\|u(t)\| \leq Ce^{-\omega t}\|x\| \) for all \(t \geq 0 \).