For a \(k \)-uniform hypergraph \(F \) let \(\text{ex}(n, F) \) be the maximum number of edges of a \(k \)-uniform \(n \)-vertex hypergraph \(H \) which contains no copy of \(F \). Determining or estimating \(\text{ex}(n, F) \) is a classical and central problem in extremal combinatorics. While for \(k = 2 \) this problem is well understood, due to the work of Turán and of Erdős and Stone, only very little is known for \(k \)-uniform hypergraphs for \(k > 2 \). We focus on the case when \(F \) is a \(k \)-uniform hypergraph with three edges on \(k + 1 \) vertices. Already this very innocent (and maybe somewhat particular looking) problem is still wide open even for \(k = 3 \).

We consider a variant of the problem where the large hypergraph \(H \) enjoys additional hereditary density conditions. Questions of this type were suggested by Erdős and Sós about 30 years ago. We show that every \(k \)-uniform hypergraph \(H \) with density \(> 2^{1-k} \) with respect to every large collection of \(k \)-cliques induced by sets of \((k-2) \)-tuples contains a copy of \(F \). The required density \(2^{1-k} \) is best possible as higher order tournament constructions show.

Our result can be viewed as a common generalisation of the first extremal result in graph theory due to Mantel (when \(k = 2 \) and the hereditary density condition reduces to a normal density condition) and a recent result of Glebov, Král’, and Volec (when \(k = 3 \) and large subsets of vertices of \(H \) induce a subhypergraph of density \(> 1/4 \)). Our proof for arbitrary \(k \geq 2 \) utilises the regularity method for hypergraphs.