In this talk we consider two decision problems. The first one is the Golumbic, Kaplan and Shamir decision sandwich problem for the property Π, where two graphs $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ are given, such that $E^1 \subseteq E^2$, plus the question whether there exists a graph $G = (V, E)$, such that $E^1 \subseteq E \subseteq E^2$, and G satisfies property Π. The second one is the Feder, Hell, Klein and Motwani decision graph partition problem, where it is given a graph G and the question whether there is a partition for the vertex set V of G into at most k sets V_1, V_2, \ldots, V_k, which can have inner properties (like V_i being a clique, or an independent set, or no restriction) and external properties (like V_iV_j being completely adjacent, or completely non-adjacent, or no restriction).

We will discuss the complexity of the sandwich problem for properties or classes of graphs arising from partition problems.