Given an action α of an inverse semigroup S on a associative ring A one may construct its associated skew inverse semigroup ring $A \rtimes_\alpha S$. We assume that A is commutative and we define a certain commutative subring T of $A \rtimes_\alpha S$ which coincides with the embedding of A in $A \rtimes_\alpha S$ whenever S is unital. Our main result asserts that $A \rtimes_\alpha S$ is a simple ring if, and only if, T is a maximal commutative subring of $A \rtimes_\alpha S$ and A is S-simple. As an application of our result we present a new proof of the simplicity criterion for a Steinberg algebra $A_R(G)$ associated with a Hausdorff and ample groupoid G.