Let \(f(z) = \sum_{n=1}^{\infty} a(n) e^{2\pi i nz} \) be a normalized Hecke eigenform in \(S^{new}_{2k}(\Gamma_0(N)) \) with integer Fourier coefficients.

In this talk, we prove that there exists a constant \(C(f) > 0 \) such that any integer is a sum of at most \(C(f) \) coefficients \(a(n) \).